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Influence of the thermoelectric effect on the Rayleigh-Be´nard instability inside a magnetic field

N. Kurenkova, E. Zienicke, and A. Thess
Department of Mechanical Engineering, Ilmenau University of Technology P.O. Box 100565, 98684 Ilmenau, Germany

~Received 7 September 2000; published 30 August 2001!

We investigate the influence of thermoelectric effect on the onset of thermal instability in the Rayleigh-
Bénard system with vertical magnetic field. An electrically conducting fluid is confined in an infinite horizontal
layer between thick thermally and electrically conducting walls. A horizontal temperature variation resulting
from convective instability leads to horizontal temperature gradients along the liquid-solid interface acting as
a source of thermoelectric currents. Through interaction with the applied magnetic field, the Lorentz force is
created modifying the instability. We find that the critical Rayleigh number for onset of convection is not
changed by the thermoelectric effect. However, the thermal gradient on the liquid-solid boundary leads to a
change of the shape of the unstable mode creating helical flow in the evolving convection rolls because of the
Lorentz force parallel to their axis. The created kinetic helicity depends linearly on the dimensionless param-
eterKTE characterizing the strength of the thermoelectric effect.

DOI: 10.1103/PhysRevE.64.036307 PACS number~s!: 47.20.Bp, 72.15.Jf, 47.65.1a
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I. INTRODUCTION

The influence of an uniform magnetic field on th
Rayleigh-Bénard instability with an electrically conductin
fluid has already been the subject of intensive study, exp
mentally as well as theoretically~see, for example, Naka
gawa @1–3# for experimental work and Chandrasekhar@4#
and Moreau@5# for a review of the theoretical background!.
The aspect that we consider in our paper is the action
thermoelectric effect at the interface between the fluid a
the horizontal walls, which confine the fluid and are a
assumed to be electrically conducting. Considering th
walls there will be horizontal temperature gradients at
interface leading to thermoelectric currents creating the L
entz force in the fluid by interaction with the magnetic fie

Our motivation to study the thermoelectric effect in ma
netoconvection is twofold. On the one hand, the understa
ing of the interaction between electrically conducting flui
and Lorentz force of thermoelectric origin presents a ch
lenge to fundamental fluid dynamics. Although Shercliff@6#
has formulated the theoretical framework of thermoelec
magnetohydrodynamics~TEMHD! as early as 1979, ther
are still very few TEMHD prototype problems that hav
been well understood. Rayleigh-Be´nard convection is well
suited to advance our understanding of TEMHD convect
because it is conceptually simple and amenable to ana
treatment.

On the other hand, interactions between thermoelec
currents and an external magnetic field in liquid metals oc
in a wide range of material processing operations, wh
solidification processes of metals, alloys or semiconduc
have to be optimized in industrial processes. For instan
the thermoelectric effect has attracted attention in the
years from authors considering continuous casting@7#, den-
dritic growth of alloys @8–10#, and semiconductor crysta
growth @11#. Convection as a key mechanism of heat tra
port inside the liquid phase has a large influence on the
lidification process, especially on the development of
solid-liquid interface. A certain kind of melt convection ca
be positive or negative for the resulting crystal, normally o
1063-651X/2001/64~3!/036307~10!/$20.00 64 0363
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has to carry out an optimization between different effects
get a crystal with the wanted properties~homogeneity, purity,
etc.!. For example, in crystal growth of semiconductors
positive effect of convection can be the homogeneous dis
bution of dopants, or the suppression of segregation, if
considers the solidification of an alloy~see, for example
@12#!. Stationary magnetic fields normally have the tenden
to suppress convection~for example, convection originating
from bouyancy effects!. For the use of stationary magnet
fields in crystal growth processes see@13#. Including also the
thermoelectric effect one has two effects partly worki
against each other: convection driven by the Lorentz fo
because of thermoelectric currents and the braking effec
the magnetic field on bouyancy convection. With the stren
and the shape of the external magnetic field one has
possibility to vary the ratios between the strength of the th
moelectric force, the MHD influence of the external ma
netic field on convection and bouyancy forces.

Investigating the stability problem in the Rayleigh-Be´nard
problem with external magnetic field and thermoelectric
fect we hope to contribute to gain the physical understand
of TEMHD that is necessary to use magnetic fields for
control of solidification processes in electrically conducti
melts in an optimal way.

The paper is organized as follows. In the next section, i
Sec. II, we give the formulation of the problem, the gover
ing equations, and the boundary conditions. We explain
way how the thermoelectric effect is taken into account. U
ing linear stability analysis the equations for the determi
tion of the unstable modes and the critical Rayleigh num
are derived. The results of the numerical computations
presented in Sec. III. We demonstrate the influence of
magnetic field and the conducting walls on the stability st
of the given Rayleigh-Be´nard system. The numerical solu
tion of the velocity, temperature, vorticity, and current de
sity functions is found. Also in Sec. III the action of th
thermoelectric effect is quantitatively analyzed. The angleg
of the convection rolls deviation is determined and presen
as a function of the parameterKTE characterizing the
strength of the thermoelectric effect. The influence of t
©2001 The American Physical Society07-1
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thermoelectric effect is also expressed in terms of the rela
kinetic helicity. Section. IV contains conclusions and calc
lation of the angleg for the Al-Li pair as a solid-liquid
system.

II. LINEAR STABILITY ANALYSIS

We consider an electrically conducting fluid in a horizo
tal layer of thicknessd, restricted by electrically conductin
walls of thicknessd from above and below. The layer ex
tends infinitely in the horizontalx- andy-directions~see Fig.
1!. Fixed values for the temperature are maintained at
bottom of the lower wall, whereT(z52d)5T1, and at the
top of upper wall, whereT(z5d1d)5T0,T1 . b̃5(T1
2T0)/(d12d) is the corresponding steady adverse tempe
ture gradient. An external uniform magnetic field of intens
H is applied inz direction.

The main focus of this paper is the influence of the th
moelectric effect, which is acting at the interface between
liquid phase and the conducting walls. The thermoelec
effect and its consequences for magnetofluid dynamics is
scribed in detail in a seminal paper by Shercliff@6#. Starting
point is the generalized Ohm’s law for an electrically co
ducting fluid containing an additional thermoelectric te
describing the generation of the current densityJ by the tem-
perature gradient gradT,

J

s
5E1m~u3H!2SgradT. ~1!

FIG. 1. Rayleigh-Be´nard convection between thick walls~con-
vection rolls, dashed line!. Hot and cold areas on the interface b
tween solid and fluid induce thermoelectric currents. These t
create the Lorentz force by interaction with the homogeneous m
netic field.
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Heres is the electrical conductivity,E is the electric field,m
is the magnetic permeability,u is the velocity vector,S is the
absolute thermoelectric power.

If the electric field is nonrotational and the thermoelect
power depends only on temperature, no thermoelec
currents arise in a homogeneous fluid, beca
curl„S(T) gradT… is zero in a homogeneous medium. This
analogous to the hydrodynamic case, where forces com
out from a scalar potential~for example, the gravitationa
force! are balanced by the pressure and no motion occ
At the boundary, whereS changes because of th
change of material,S grad T becomes rotational, i.e
curl„S(T) gradT…Þ0 and closed currents appear at t
boundary, which are determined by thetemperature distribu-
tion along the interface. In the problem at hand the fluid
rising up and coming down in consequence of convect
creates hot and cool regions in the boundary layer, the
through producing a horizontal temperature gradient on
surface fluid wall. A current flow appears parallel to the co
tact surface of two media with different absolute thermoel
tric power ~see Fig. 1!. The boundary condition for the tan
gential components of the current density can be derived
the integration of Eq.~1! around the elementary contour co
ering the interface~assuming the absence of electrical fie
and the velocity to be zero at the interface!, see Shercliff@6#,

Jws

sw
2

Js

s f
5P

]T

]s
. ~2!

Lower indexs denotes tangential components, indexf andw
are used for the fluid and wall quantities appropriately, fun
tions without index are defined for fluid.P5Sf2Sw is the
thermoelectric power of the metal pair.

Our aim in this section is to derive the equations for t
onset of instability and the determination of the unsta
modes. As it turns out the critical Rayleigh number does
depend on the influence of the thermoelectric effect, beca
the global system of equations describing the behavior of
Rayleigh-Bénard convection in the magnetic field betwe
thick electrically conducting wall divides into two sub
systems of equations, which are formally independent
each other, i.e., they are solved separately. The first s
system defines the linear instability for the onset of t
Rayleigh-Bénard convection and is not influenced by th
thermoelectric effect~whether it is present or not!. The sec-
ond subsystem states how the Lorentz force of the ther
electric currents inside the magnetic field influences
shape of the unstable mode. Therefore we first prese
derivation of the first subsystem determining critical char
teristics of instability in Sec. II A. In Sec. II B we investigat
the second subsystem dealing with the influence of the t
moelectric effect.

A. Onset of instability

We begin now with the derivation of the first subsyste
of equations, which determines the critical Rayleigh num
for the instability. This result is validin both cases: in the
presence of the thermoelectric effect as well as without i

n
g-
7-2
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Regarding buoyancy effects in the Boussinesq approxi
tion, where the fluid is considered as incompressible exc
in the buoyancy force term of the Navier-Stokes equati
the fluid is described by the Navier-Stokes equation incl
ing the Lorentz force, the temperature transport equat
and the equations for the magnetic field:

]ui

]t
1uj

]ui

]xj
52S 11

Dr

r Dgi2
1

r

]p

]xi
1n¹2ui1

m

r
~J3H! i ,

~3!

]T

]t
1uj

]T

]xj
5k f¹

2T, ~4!

]Hi

]t
1uj

]Hi

]xj
5H j

]ui

]xj
1h f¹

2Hi , ~5!

where i 5x,y,z. r5const is the fluid density at some pro
erly chosen mean temperatureT* and Dr52ra(T2T* ),
where a is the coefficient of volume expansion.g is the
acceleration due to gravity,p is pressure in the fluid,n is the
kinematic viscosity,J the magnetic current density.T is the
temperature,k is the coefficient of thermal diffusivity,h
51/(ms) is the electrical resistivity of the fluid. The mag
netic field and the velocity field are solenoidal: divH50, div
u50. Inside the solid walls there is no convection and o
gets diffusion equations for the temperature and the magn
field:

]Tw

]t
5kw¹2Tw , ~6!

]Hwi

]t
5hw¹2Hwi . ~7!

The unperturbed state is characterized by quiescent
(u[0) and temperature transport only by means of cond
tion. The solution of the temperature equations~4! with u
[0 in the fluid and~6! inside the walls is given by the
following piecewise linear temperature profile

Tw15T12
l f

lw
b~d1z!, 2d,z,0, ~8!

T5T12bS l f

lw
d1zD , 0,z,d, ~9!

Tw25T01
l f

lw
b~d1d2z!, d,z,d1d, ~10!

wherel is the coefficient of thermal conductivity.b5b̃(d
12d)/(d12dl f /lw) is the temperature gradient, which
maintained inside the fluid. Lower indexw1 denotes the
lower wall, w2 the upper wall. As the temperature profi
depends on thez coordinate only, there are no horizont
temperature gradients at the liquid-solid interfaces and c
sequently no thermoelectric currents. This meansJ[0 in the
unperturbed state.
03630
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Now we proceed with the linear stability analysis by e
panding the perturbation of the initial state into norm
modes. The perturbations areu,v,w for the velocity,u5T
2T(z) for the temperature, whereT(z) is given by Eqs.~8!,
~9!, and ~10!. hx ,hy ,hz is the deviation from thez-directed
uniform magnetic field. For the vectorial quantities it
enough to consider thez components,

w5W~z!exp@ i ~kxx1kyy!1ct#,

u5Q~z!exp@ i ~kxx1kyy!1ct#, ~11!

hz5K~z!exp@ i ~kxx1kyy!1ct#,

wherek5A(kx
21ky

2) is the wave number of the disturbanc
c is the growth rate of the perturbations in time. To introdu
nondimensional variables we choosed as unit of length,bd
as unit of temperature,d2/n as unit of time,H as unit of
magnetic field and letD5d(]/]z) andk, z be already mea-
sured in nondimensional units.

Inserting the normal mode expansions into equations~3!–
~7! we get the following system of dimensionless line
equations for the marginal state~characterized byc50):

~D22k2!2W2k2RaQ1~Pm /P!21Ha2D~D22k2!K50,
~12!

~D22k2!Q1W50, ~13!

~D22k2!K1~Pm /P!DW50, ~14!

~D22k2!Qw50, ~15!

~D22k2!Kw50. ~16!

The first three equations hold for the fluid and the last t
equations are valid inside the walls. Here we have introdu
the following nondimensional parameters: R
5agbd4/(k fn) is the Rayleigh number, Ha5dmHAs f /rn
is the Hartmann number. The ratio of the magnetic Pran
numberPm5n/h f and the Prandtl numberP5n/k f one can
consider as one parameter (Pm /P)5k f /h f .

A solution of the Eqs.~12!–~16! must be sought that sat
isfies the nondimensional boundary conditions,

W50, DW50 for z50 and z51,

Qw5Q, LlDQ5DQw for z50 and z51,
~17!

Qw50 for z52Ld and z511Ld ,

with the nondimensional parametersLl5l f /lw , Ld5d/d.
We do not write the boundary conditions for the magne
field because first, as it turned out, the critical Rayleigh nu
ber is determined by the Eqs.~12!–~16! with the boundary
conditions ~17! already selfconsistently and second we
not search the solution for the magnetic fieldK in the mar-
ginal stable state.
7-3
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The system of Eqs.~12!–~14! can be reduced to the fol
lowing differential equation for thez component of the ve-
locity W ~see Chandrasekhar@4#!:

W(6)2~3k21Ha2!W(4)1k2~3k21Ha2!W(2)

1k2~Ra2k4!W50. ~18!

The upper index in parentheses denotes the order of de
tive. The general solution forW is a superposition of expo
nential, sine or cosine functions with unknown coefficien
Cn(n51, . . . ,6) in thedependence on the rootsqn of the
appropriate characteristic equation@14#:

q62~3k21Ha2!q41k2~3k21Ha2!q21k2~Ra2k4!50.
~19!

These rootsqn(n51, . . . ,6) can bereal or complex, simple
or multiple depending on the values ofk,Ra,Ha. They deter-
mine the form of the functionW ~all possible cases are de
scribed in detail in the Appendix!. Then using the Eq.~12!, in
which K is eliminated by help of Eq.~14!, we can write the
general solution for the temperature through the general
lution of the velocityW in the following form:

Q5
1

k2Ra
~W(4)2@2k21Ha2#W(2)1k4W!,

Qw15C7 exp@2kz#1C8 exp@kz#, ~20!

Qw25C9 exp@2kz#1C10exp@kz#,

whereC7 , . . . ,C10 are unknown coefficients.
To determine the ten coefficientsCn in the ansatz for the

velocity W ~see Appendix! and the temperatureQ ~20! these
expressions are inserted into the boundary conditions~17!.
This leads to a system of linear equations that can be wri
in matrix formA•C50, whereC denotes the vector contain
ing the ten coefficients. The coefficients of matrixA depend
on k,Ra,Ha,Ll ,Ld . A nontrivial solution exists, if detA
50. This condition determines the Rayleigh number for n
tral stability Ran5Ran(k,Ha,Ll ,Ld). One gets thecritical
Rayleigh numberRac for the onset of convection by takin
the minimum value of Ran in dependence on the wave num
ber k: Rac(Ha,Ll ,Ld)5minkeR Ran(k,Ha,Ll ,Ld).

The system of equations that was considered in this
tion is, as already mentioned, valid both in the presence
absence of the thermoelectric effect. Therefore the valu
the critical Rayleigh number is independent from the pr
ence of the thermoelectric effect.

B. Influence of the thermoelectric effect on the unstable mode

Without regarding the thermoelectric effect thez compo-
nents of the vorticityvz and current densityJz are zero~see
@4#!. The unstable solutions are convection rolls directing
an arbitrary direction of thexy plane. To take into accoun
the consequences of the thermoelectric effect we choose
axes of the convection rolls to be parallel to thex axis ~see
Fig. 1, part 1!. The temperature distribution iny direction
03630
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shows a sinusoidal shape and creates thermoelectric cur
parallel to they axis which are strongest where the tempe
ture curve is steepest and which are zero at the maxima
minima of the temperature distribution~see Fig. 1, part 2!.
The resulting Lorenz force points in thex direction, parallel
to the axes of the convection rolls and its strength is
oscillating function ofy ~see Fig. 1, part 3!.

The Lorentz force will accelerate the fluid along the ax
of the convection rolls and the vorticity will additionall
have az component besides thex component. The boundar
condition of the thermoelectric effect~2! for the tangential
components of the current density can be transformed~using
div J50) into a boundary condition forJz ,

1

sw

]Jwz

]z
2

1

s f

]Jz

]z
5PS ]2T

]x2
1

]2T

]y2D . ~21!

Thus, to describe the influence of the thermoelectric eff
one needs additionally the equations for the vorticity a
current density in the fluid and in the walls. We use t
normal mode expansions for thez components of the pertur
bations of the vorticityvz and current densityj z :

vz5Z~z!exp@ i ~kxx1kyy!1ct#,
~22!

j z5X~z!exp@ i ~kxx1kyy!1ct#.

Computing the curl of Eqs.~3!, ~5!, and~7! and transforming
to the nondimensional units we get the following system
equations forZ andX (c50):

~D22k2!Z1~Pm /P!21Ha2DX50, ~23!

~D22k2!X1~Pm /P!DZ50, ~24!

~D22k2!Xw50. ~25!

Then the boundary conditions for thez components of the
vorticity and the current density are:

LsDXw2DX5KTE~2k2!Q, Xw5X for

z50 and z51,

Xw50 for z52Ld and z511Ld , ~26!

Z50 for z50 and z51.

Here two new nondimensional parameters appear:Ls

5s f /sw and the thermoelectric parameterKTE
5Pbds f /H. The first boundary condition in Eqs.~26! is the
condition of the thermoelectric effect~21! now in dimension-
less form.

We remind that the system~23!–~25! describing the influ-
ence of the thermoelectric effect is formally independe
from the system~12!–~16! describing the onset of instability
The system~23!–~25! is added to the system~12!–~16!, if
the thermoelectric effect must be taken into account. It c
be once more pointed out that on the ground of the indep
7-4
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INFLUENCE OF THE THERMOELECTRIC EFFECT ON . . . PHYSICAL REVIEW E64 036307
dence of these two systems the critical Rayleigh num
comes only from the system~12!–~16!, even though the ther
moelectric effect is present.

Eliminating the vorticity one receives one differenti
equation for the current density in the fluid

X(4)2~2k21Ha2!X(2)1k4X50. ~27!

The characteristic equation of this equation has only r
rootsw1 , . . . ,w4. Equation in the walls~25! is solved sepa-
rately and the general solution for current density is given

X5 (
n51

4

Gnexp@wnz#,

Xw15G5exp@kz#1G6exp@2kz#, ~28!

Xw25G7exp@kz#1G8exp@2kz#.

Here G1 , . . . ,G8 are unknown coefficients. If the solutio
for the current densityX is known, then the solution for the
vorticity Z is gained by integration of Eq.~24!. Substituting
this expression for the vorticityZ in Eq. ~23! we find that the
constant of integration is equal to zero. Then the gen
solution for the vorticity is

Z52~Pm /P!21(
n51

4

Gn

wn
22k2

wn
exp@wnz#. ~29!

The general solutions forZ and X being inserted in the
boundary conditions~26! give an inhomogeneous system
linear equations for determination of theGn . This system
can be written in matrix form asM•G5F, where the ele-
ments of matrixM and right-hand side vectorG are given.

Thus we have surveyed the solution of the systems~12!–
~16! and~23!–~25! from five and three differential equation
with the boundary conditions~17! and ~26! accordingly,
which in total contain the seven nondimensional paramet
Ra,Ha,(Pm /P),Ll ,Ld ,Ls ,KTE , described above.

III. NUMERICAL ANALYSIS AND RESULTS

In Sec. II we derived the matrix equations for the coe
cients of the general solution first for the determination
the critical Rayleigh number and second for the determin
how the unstable mode is changed by the thermoelectric
fect. These equations are solved numerically with help of
LU decomposition method@15#. This section is divided into
two subsections. The first one deals with the determinatio
the critical Rayleigh number and the second one with
thermoelectric effect.

A. Computation of the critical Rayleigh number

As it is already stated in Sec. II A Rac5Rac(Ha,Ll ,Ld).
The ratioLl between the thermal conductivities of the flu
and wall and the ratioLd of the fluid and wall thickness
come into the problem because the thick walls are con
ered. To show the influence of the thick walls on the critic
Rayleigh number we present in Figs. 2~a! and 2~b! the Rac
03630
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and the corresponding wave numberkc as a functions ofLd .
Two curves for Ha50 and Ha51 are shown, the ratioLl is
fixed to 0.5. Increasing of the Hartmann number leads to
increase of the critical Rayleigh number, because magn
field has the tendency to suppress convection. In absenc
the conducting walls — corresponding toLd50 — the ob-
tained results can be compared with the computation dat
Chandrasekhar@4# in case of the both rigid boundaries~see
Table I!.

From Fig. 2~a! we observe a destabilizing influence of th
conducting walls compared toLd50 on the stability state.
This means if the thickness of the walls increases (Ld in-
creases! then instability occurs at a lower value of the critic
Rayleigh number. This can be explained by the nature of
physical processes taking place in the Rayleigh-Be´nard con-
vection. As known~for example, from the detailed descrip
tion of convection given by Normandet al. @16#! the vertical
temperature gradient maintained in the fluid has the con
quence that there is light fluid below heavy fluid because
thermal expansion. Accordingly the parts of the fluid have
natural tendency to redistribute themselves in order to am
the formed disbalance. Instability occurs at minimum te
perature gradient at which the stabilizing effect of viscos
and thermodiffusion are overcome by the destabilizing bu
ancy. In presence of the conducting walls there appears
boundary condition~17! of a constancy of the heat curren
through boundary interface between the wall and fluid. T
heat current inz direction from bottom wall to fluid is addi-

FIG. 2. Critical Rayleigh number~a! and wave number~b! as a
functions of the parameterLd ~the ratio between fluid layer and wa
thickness’! for Ha50 and Ha51 at Ll50.5 in the state of the
stationary convection.

TABLE I. Comparison of the critical Rayleigh numbers and t
wave numbers, computed on the base of present theory~at equality
to zero of the wall thickness! with the result of Chandrasekhar@4#
~both bounding surfaces are rigid!.

Numerical computation The Chandrasekhar’s
of present theory results

Ha kc Rac kc Rac

0 3.11 1707.768 3.13 1707.8
10 4.01 3757.229 4 3757.3
7-5
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tional driving force of the convection. Whereas temperat
gradient in fluid and forces inhibiting the convection~viscos-
ity and thermodiffusion! are the same as previously. Ther
fore the instability can manifest itself already at a lower a
verse temperature gradient, i.e., at a lower value of
Rayleigh number.

The z components of the velocityW and temperatureQ
for the mode of neutral stability at Ha51,Ll50.5,Ld50.5
~with the coefficientC10 in Eq. ~20! set equal to 1! is plotted
in Figs. 3~a! and 3~b!. Only thez dependence is shown, i
horizontal direction~normal to axis of the convection rolls!
the velocity and temperature are oscillating functions w
wavelengthLc52p/kc . In the graphic 3~b! for the tempera-
tureQ one can see a kink of the curve at transition across
wall-fluid interface. The temperatures of the wall and fluid
kink point are equal, but the derivatives of the temperat
functions are different in the wall and fluid. The slope of t
temperature curve changes at interface, because wall
fluid have different thermal conductivities.

At the end of this section we enter an additional verific
tion of received results for the marginal stability curves
the two limit cases of the parameterLd , namely,Ld→0 and
Ld→`. The limits of the critical Rayleigh number in thes
limit cases we will name Rac0 and Rac` appropriately. In
both limit cases the matrixA, with help of which the critical
Rayleigh number is determined, can be simplified.

First we have made numerical calculations in the frame
an analysis where the wall thicknessd is assumed to be sma
in comparison with the fluid layer thicknessd(d!d⇔Ld
!1). In this case one can approximate the temperature in

FIG. 3. The solution for thez components of the velocityW ~a!
and of the temperatureQ in the fluid and walls~b! for the state of
the marginal stability at Ha51,Ll50.5,Ld50.5.
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walls by a linear function of thez coordinate

Qw15C781C88z,

Qw25C981C108 z,

because the partial derivatives inx andy direction are much
smaller than the partial derivative inz direction. Figure 4~a!
represents again the critical Rayleigh number as a functio
Ld . Curve a is computed using the full heat equation a
curve b is computed by the linear approximation for th
walls. In the interval 0,Ld,0.1 both curves are in good
agreement, but for higher values ofLd the linear approxima-
tion is no longer appropriate and the destabilizing effect
the heat conducting walls is overestimated.

Second we explore the marginal stability state in case
the high limit ofLd , when the fluid layer thicknessd is much
smaller than the wall thicknessd (d!d⇔Ld@1). Then limit
evaluation atLd→` in the boundary conditions~17! gives
the possibility to describe the temperature functions in
walls as depending only on one exponential function,

Qw15C89 exp@kz#,

Qw25C99 exp@2kz#.

Accordingly this procedure decreases linear size of the
trix A by 2. The reduced matrixA does not depend on th
parameterLd and one can numerically compute the asym
tote, to which the critical Rayleigh number approaches
Ld→`. This asymptote Rac`53367.010 99 labeled c is
dashed in Fig. 4~a!. In the computation shown in Fig. 4~a! we
have chosen a higher value of the Hartmann number
510 in order to enhance the influence of the magnetic fi

FIG. 4. ~a! Critical Rayleigh number as a function ofLd ~the
ratio between fluid layer and wall thickness’! at Ha510,Ll50.5:
curvea is gained using the full system of equations, curveb for the
case when the wall thickness is considered as small in compar
with the fluid layer thicknessLd!1 ~the temperature function in the
walls behaves as a linear function!. Curvec presents the asymptoti
behavior of the critical Rayleigh number atLd→` ~the temperature
in the walls can be described by one exponential function!. ~b!
Dependence of the limits of the critical Rayleigh number atLd

→0 andLd→` on the Hartmann number, curvea presents Rac0

and curveb Rac`.
7-6
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(Ll still is 0.5!. The critical Rayleigh number is more tha
twice the value as in Fig. 2~a! for Ha50 and Ha51, which
demonstrates the stabilizing effect of the magnetic field.

The dependence of the critical Rayleigh number on
parameterLd can be approximated by the exponential fun
tion as

Rac5Rac`1exp@2kLd#,

where, for example, for Ha510 andLl50.5 @as in Fig. 4~a!#
the exponent is found to be close tok'7.

In Fig. 4~b! we present a dependence of the both limits
the critical Rayleigh number Rac0 and Rac` on the Hartmann
number up to Ha5100.

B. Measures of the influence of the thermoelectric effect

We have already found out that the thermoelectric eff
does not change the critical Rayleigh number for onse
convection. In this section we shall answer the question: h
is the unstable mode influenced by the thermoelectric effe
Additionally we define two quantities that are suitable
show the strength of the influence of the thermoelectric
fect.

The thermoelectrical parameterKTE is present only in the
boundary conditions~26! for thez components of the vortic
ity Z and the current densityX. Namely the right-hand side
vectorF of the systemM•G5F for determination ofGn(n
51, . . . ,8) includesKTE . As the result of numerical solu
tion of this system Figs. 5~a! and 5~b! illustrate the behavior
of Z and X in the marginal stable state for Ha51,Ll

50.5,Ld50.5 ~the same parameters as for Fig. 3!, (Pm /P)
50.531025,Ls50.5. Given results were computed at t
thermoelectrical parameterKTE50.1. As forW andQ in Fig.
3 also forZ andX arbitrary units are used, because the line
equations for the unstable mode give only a linear subsp
as a solution.

To clear up the influence of the thermoelectric effect
the shape of the unstable mode we search the horizo
components of the velocityu,v and vorticityvx ,vy . From
the substitution~11! we get thez components of the velocity
w and vorticityvz . Then we findu,v from system,

]u

]x
1

]v
]y

52
]w

]z
,

]v
]x

2
]u

]y
5vz ,

andvx ,vy as follows,

vx5
]w

]y
2

]v
]z

,

~30!

vy5
]u

]z
2

]w

]x
.

The z component of the vorticityvz is function of theKTE
number, which enters into the boundary conditions~26!.
Therefore the general vectors of the velocityu5(u,v,w) and
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vorticity v5(vx ,vy ,vz) are also functions of theKTE .
Thus the thermoelectrical effect being induced by the c
vection influences itself the convection by changing t
shape of the unstable mode, whereas the critical Rayle
number remains unchanged. The qualitative thr
dimensional schema of the fluid convection flow in the st
of the marginal stability is sketched in Fig. 6, from whic
one can see that the streamlines inside of a convection
are situated in vertical planes. Though under the influenc
the thermoelectric effect these planes are turned aroun
vertical axis by an angleg @see also Fig. 8~a!#. This angle is
determined by amount of theKTE number. We define angleg
for the marginal stability state as follows:

FIG. 5. The solution for the vorticityZ ~a! and for the current
density X in the fluid and walls~b! for the state of the margina
stability at Ha51,Ll50.5,Ld50.5,(Pm /P)50.531025,Ls

50.5,KTE50.1.

FIG. 6. The qualitative three-dimensional schema of the conv
tion rolls position influenced by the thermoelectric effect in the st
of the marginal stability.
7-7
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g5 lim
z→0

Uarctan
u~z!

v~z!
U. ~31!

For the fluid and walls in the given system a concr
metal pair can be taken. Then the angleg will depend on the
parametersLl ,Ls ,(Pm /P) characterizing the properties o
metals, and on Ha,Ld . The angleg will magnify with grow-
ing parameterKTE . This fact can be also represented
behavior of the relative kinetic helicity

hkin5

E E
V
E u•v dx dy dz

AE E
V
E u 2 dx dy dzE E

V
E v 2 dx dy dz

,

~whereV is volume of integration! as a function of theKTE
number ~see Fig. 7! at Ha51,Ld50.5,Ll50.5,Ls

50.5,(Pm /P)50.531025.
Thus we can close about a physical treatment of the

influence of the thermoelectric effect following. The curre
flow arising in fluid-wall boundary layer as result of the ho
zontal temperature gradient on this interface creates the
entz force that is parallel to the boundary surface and par
to the convection rolls axis. However, the Lorentz force h
different absolute value along of they direction. It leads to a
helical flow inside the convection rolls.

IV. CONCLUSION

In summary, we want to conclude that the thermally a
electrically conducting walls have destabilizing influen
upon the stability set in the Rayleigh-Be´nard problem inside
the magnetic field. The thermoelectric effect~taken into ac-
count as the boundary condition on the fluid-wall interfac!
does not affect the critical Rayleigh number, but changes
shape of unstable mode.

The prediction of the influence of the thermoelectric
fect upon the shape of unstable modes of the solid-liq
system Al-Li can be instanced qua numerical test. For gi
metal pair the angleg of the convection rolls deviation is th
increasing function of theKTE number, graph of which is
plotted in Fig. 8~b!. This function of the dependence of th

FIG. 7. Kinetic helicity as a function of the thermoelectric p
rameter KTE in the state of the marginal stability at Ha51,Ld

50.5,Ll50.5,Ls50.5,(Pm /P)50.531025.
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angleg on KTE is computed at Ra51462.64, Ha51, Ld

50.5 with help of the formula~31!.
The parameterKTE5(Pbds f)/H is determined by the

thermoelectric powerP of the metal pair, electrical conduc
tivity of the liquid phases f , maintained temperature grad
ent b in the fluid, thicknessd of the liquid layer, and inten-
sity H of the magnetic field. For the Al-Li pairP
'30 (mV/K) @6#, s f5sLi . There are three further param
etersb, d, andH, which are independent on the properties
chosen metals. But to calculate theKTE number and the cor-
responding angleg for the Al-Li pair one can not freely give
a numerical values for all three coefficientsb, d, and H,
because these coefficients are interrelated by Ra and
numbers. We can preset an arbitrary numerical value only
one from the coefficientsb, d or H. Then we can calculate
the other two coefficients from the following relations:

bd45const1 ,

dH5const2 . ~32!

Here const1 and const2 are specified by concrete metals a
by the fixed Ra and Ha numbers, at which the given anglg
as function fromKTE was computed. For example, for th
solid-liquid system Al-Li at magnetic fieldB51 mT we get
from Eq. ~32! d516.1 mm, b5208,255 (K/m). Upon that
the parameterKTE'0.022 20, it adds up to the angleg
'67.31°.

FIG. 8. The angleg of the convection rolls deviation unde
influence of the thermoelectric effect in the state of the margi
stability ~the schematic view from above! ~a!; the angleg as a
function of the thermoelectrical parameterKTE , calculated for the
Al-Li solid-liquid system at Ra51462.64,Ha51,Ld50.5 ~b!.
7-8
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We note also that in absence of the thermoelectric ef
the limKTE→0g50, i.e., the convection rolls do not devia

from the zy plane; with growth of the thermoelectric effe
the turn of the rolls increases with increasing value ofKTE .
For KTE→` the angleg approchesp/2 asymptotically. The
value of p/2 is of couse never reached for finite value
KTE .
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APPENDIX

In the Appendix we present the forms of solution of t
differential equation~18! for velocity W in dependence on
thek, Ra, Ha. These forms of solution are necessary to in
them in the solution for temperature~20! and in the boundary
condition ~17!.

The general solution forW can be written as superpositio

W5C1f 1~z!1C2f 2~z!1C3f 3~z!1C4f 4~z!

1C5f 5~z!1C6f 6~z!. ~A1!

Here Ci ( i 51, . . . ,6) areunknown coefficients, the func
tions f i ( i 51, . . . ,6) aredetermined by the six roots of th
characteristic equation~19!. The characteristic equation~19!
is reduced by the substitution

q25x ~A2!

to the cubic equation

x31a2x21a1x1a050, ~A3!

where a05k2(Ra2k4), a15k2(3k21Ha2), a252(3k2

1Ha2). Define the parameterA andB as follows:

A5
1

3
a12

1

9
a2

2 ,

~A4!

B5
1

6
~a1a223a0!2

1

27
a2

3 .

The sign of quantityA31B2 determines whether the roots o
characteristic equation~A3! are real~different or multiple! or
complex. Three cases (A31B2.0,,0 or 50) specify ap-
propriately the form of solution of the Eq.~18!.

One of the roots of the Eq.~A3! x1 is always real irre-
spective of the sign of quantityA31B2. It is of importance
this root x1 is positive, negative or equal to zero. Ifx1.0
then two real rootsq1 and q252q1 found from Eq.~A2!
yield the functions~see also@14#!

f 1~z!5exp@q1z#,
~A5!

f 2~z!5exp@q2z#.
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If x1,0 then it is found from Eq.~A2! two complex conju-
gate rootsq1 ,q2 with only imaginary parts. Correspondin
functions f 1 , f 2 are

f 1~z!5cos@ Im~q1!z#,
~A6!

f 2~z!5sin@ Im~q2!z#.

In the casex150 we have two-multiple rootq15q250 and

f 1~z!51,

f 2~z!5z. ~A7!

Thereby all possibilities forf 1 , f 2 are over. Consider remain
ing four function f i ( i 53, . . . ,6).

~1! If A31B2.0 then the Eq.~A3! has besides one rea
root x1 another two complex conjugate rootsx2 ,x3. Thus
using ~A2! we get another four roots for the equation~19!.
They are two pairs of the complex conjugate rootsq3 ,q4 and
q552q3 , q652q4. In this case the functionsf i ( i
53, . . . ,6) have the form

f 35exp@Re~q3!z#cos@ Im~q3!z#,

f 45exp@Re~q4!z#sin@ Im~q4!z#,

f 55exp@Re~q5!z#cos@ Im~q5!z#,s ~A8!

f 65exp@Re~q6!z#sin@ Im~q6!z#.

~2! If A31B2,0 then the Eq.~A3! has besides one rea
root x1 another two real rootsx2 andx3. Upon that all three
roots are different. In this case signs ofx2 andx3 determine
via Eq. ~A2! the rootsqi and form of f i ( i 53, . . . ,6). If
x2.0 then

f 3~z!5exp@q3z#,
~A9!

f 4~z!5exp@q4z#.

If x2,0 then

f 3~z!5cos@ Im~q3!z#,
~A10!

f 4~z!5sin@ Im~q4!z#.

If x250 then

f 3~z!51,
~A11!

f 4~z!5z.

Analogically one can write the functionf 5 , f 6 for x3.0,x3
,0,x350, counting thatx1 ,x2 ,x3 can not be equal to zero
simultaneously.

~3! If A31B250 (A352B2Þ0) then the equation~A3!
has two equal rootsx25x3. With that if x25x3.0 then
q35q4.0, q55q652q3,0 and
7-9
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f 3~z!5exp@q3z#,

f 4~z!5z exp@q4z#,
~A12!

f 5~z!5exp@q5z#,

f 6~z!5z exp@q6z#.

If x25x3,0 then

f 3~z!5cos@ Im~q3!z#,

f 4~z!5z cos@ Im~q3!z#,

f 5~z!5sin@ Im~q5!z#, ~A13!

f 6~z!5z sin@ Im~q5!z#.
y

-
b

-

03630
If x25x350 then

f 3~z!51,

f 4~z!5z,

f 5~z!5z2, ~A14!

f 6~z!5z3.

If A31B250 (A5B50) then solution of functionW has
polynomial form

W5~C11C2z1C3z2!exp@q1z#1~C41C5z

1C6z2!exp@q2z#, ~A15!

whereq15Ax1 , q252Ax152q1.
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