PHYSICAL REVIEW E, VOLUME 64, 036307
Influence of the thermoelectric effect on the Rayleigh-Beard instability inside a magnetic field
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We investigate the influence of thermoelectric effect on the onset of thermal instability in the Rayleigh-
Benard system with vertical magnetic field. An electrically conducting fluid is confined in an infinite horizontal
layer between thick thermally and electrically conducting walls. A horizontal temperature variation resulting
from convective instability leads to horizontal temperature gradients along the liquid-solid interface acting as
a source of thermoelectric currents. Through interaction with the applied magnetic field, the Lorentz force is
created modifying the instability. We find that the critical Rayleigh number for onset of convection is not
changed by the thermoelectric effect. However, the thermal gradient on the liquid-solid boundary leads to a
change of the shape of the unstable mode creating helical flow in the evolving convection rolls because of the
Lorentz force parallel to their axis. The created kinetic helicity depends linearly on the dimensionless param-
eterK¢g characterizing the strength of the thermoelectric effect.
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[. INTRODUCTION has to carry out an optimization between different effects to
get a crystal with the wanted propertiggmogeneity, purity,
The influence of an uniform magnetic field on the etc). For example, in crystal growth of semiconductors a
Rayleigh-Baard instability with an electrically conducting positive effect of convection can be the homogeneous distri-
fluid has already been the subject of intensive study, experbution of dopants, or the suppression of segregation, if one
mentally as well as theoreticallisee, for example, Naka- considers the solidification of an allofsee, for example
gawa[1-3] for experimental work and Chandrasekijdt  [12]). Stationary magnetic fields normally have the tendency
and Moreay5] for a review of the theoretical background to suppress convectioffior example, convection originating
The aspect that we consider in our paper is the action ofrom bouyancy effecls For the use of stationary magnetic
thermoelectric effect at the interface between the fluid andields in crystal growth processes $48]. Including also the
the horizontal walls, which confine the fluid and are alsothermoelectric effect one has two effects partly working
assumed to be electrically conducting. Considering thickagainst each other: convection driven by the Lorentz force
walls there will be horizontal temperature gradients at thebecause of thermoelectric currents and the braking effect of
interface leading to thermoelectric currents creating the Lorthe magnetic field on bouyancy convection. With the strength
entz force in the fluid by interaction with the magnetic field. and the shape of the external magnetic field one has the
Our motivation to study the thermoelectric effect in mag- possibility to vary the ratios between the strength of the ther-
netoconvection is twofold. On the one hand, the understandnoelectric force, the MHD influence of the external mag-
ing of the interaction between electrically conducting fluidsnetic field on convection and bouyancy forces.
and Lorentz force of thermoelectric origin presents a chal- Investigating the stability problem in the Rayleigh+2ed
lenge to fundamental fluid dynamics. Although Sherdl@f  problem with external magnetic field and thermoelectric ef-
has formulated the theoretical framework of thermoelectricdfect we hope to contribute to gain the physical understanding
magnetohydrodynamic6TEMHD) as early as 1979, there of TEMHD that is necessary to use magnetic fields for the
are still very few TEMHD prototype problems that have control of solidification processes in electrically conducting
been well understood. Rayleigh-Bard convection is well melts in an optimal way.
suited to advance our understanding of TEMHD convection The paper is organized as follows. In the next section, i.e.,
because it is conceptually simple and amenable to analytiBec. I, we give the formulation of the problem, the govern-
treatment. ing equations, and the boundary conditions. We explain the
On the other hand, interactions between thermoelectrigzvay how the thermoelectric effect is taken into account. Us-
currents and an external magnetic field in liquid metals occuing linear stability analysis the equations for the determina-
in a wide range of material processing operations, wherdion of the unstable modes and the critical Rayleigh number
solidification processes of metals, alloys or semiconductorare derived. The results of the numerical computations are
have to be optimized in industrial processes. For instancegresented in Sec. lll. We demonstrate the influence of the
the thermoelectric effect has attracted attention in the lasmmagnetic field and the conducting walls on the stability state
years from authors considering continuous casfifigden-  of the given Rayleigh-Beard system. The numerical solu-
dritic growth of alloys[8—-10], and semiconductor crystal tion of the velocity, temperature, vorticity, and current den-
growth[11]. Convection as a key mechanism of heat transsity functions is found. Also in Sec. Ill the action of the
port inside the liquid phase has a large influence on the sahermoelectric effect is quantitatively analyzed. The angle
lidification process, especially on the development of theof the convection rolls deviation is determined and presented
solid-liquid interface. A certain kind of melt convection can as a function of the parametef;g characterizing the
be positive or negative for the resulting crystal, normally onestrength of the thermoelectric effect. The influence of the
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Z4 B Hereo is the electrical conductivity is the electric fieldu
d+s =111 T, is the magnetic permeability, is the velocity vectorSis the
hot oow% wall absolute thermoelectric power.
d Tormocicone current If the electric field is nonrotational and the thermoelectric
_ ~ A fluid power depends only on temperature, no thermoelectric
’” \V w/ ~ currents arise in a homogeneous fluid, because
"\_,/ \\_’,"‘ curl(S(T) gradT) is zero in a homogeneous medium. This is
o, analogous to the hydrodynamic case, where forces coming
0 mecmﬁ&m@ Y out from a scalar potentiaifor example, the gravitational
hot /cool hot force) are balanced by the pressure and no motion occurs.
-3 T, At the boundary, whereS changes because of the

thermoelectric current change of material,S grad T becomes rotational, i.e.
T 4 e —— > — 3 | curl(S(T) gradT)#0 and closed currents appear at the
| boundary, which are determined by tteenperature distribu-

y> tion along the interfaceln the problem at hand the fluid
hot W hot rising up and coming down in consequence of convection
horizontal temperature creates hot and cool regions in the boundary layer, there-
distribution through producing a horizontal temperature gradient on the
P surface fluid wall. A current flow appears parallel to the con-
z e y . Lorentz - tact surface of two media with different absolute thermoelec-
hot /~ /f'” force . y tric power (see Fig. 1L The boundary condition for the tan-
X/l cool/y‘// hot > genfcial components of the current density can be derived by
,f o the integration of Eq(1) around the elementary contour cov-
.~ LN L ering the interfacgassuming the absence of electrical field

_ ) _ and the velocity to be zero at the interfaceee Shercliff6],
FIG. 1. Rayleigh-Beard convection between thick wallson-

vection rolls, dashed lineHot and cold areas on the interface be- 3 3 JT

tween solid and fluid induce thermoelectric currents. These then ws_ TS _p—. 2)
create the Lorentz force by interaction with the homogeneous mag- Oy O¢ Js

netic field.

Lower indexs denotes tangential components, indendw
thermoelectric effect is also expressed in terms of the relativgye ysed for the fluid and wall quantities appropriately, func-
kinetiC heI|C|ty SeCtion. v Contains COI’IC|USiOhS and CaICU'tionS W|thout index are deﬁned for ﬂu|cP:Sf_Sw is the
|ati0n of the angley for the Al'L| pair as a Sol|d'||qu|d thermoelectric power of the metal pair_
system. Our aim in this section is to derive the equations for the

onset of instability and the determination of the unstable

Il. LINEAR STABILITY ANALYSIS modes. As it turns out the critical Rayleigh number does not

depend on the influence of the thermoelectric effect, because
the global system of equations describing the behavior of the
Rayleigh-Beard convection in the magnetic field between
thick electrically conducting wall divides into two sub-
1). Fixed values for the temperature are maintained at th%ﬁtﬁ rgfhg: (iaguatlr?gys 'a\r/éhlsngrde ;gggg%l;nqrehpee?i?:tmst?tf)—
bottom of the lower wall, wher@ (z= =) =Ty, anij at the system defines the linear instability for the onset of the
top of upper wall, whereT(z=d+6)=To,<T;. B=(T1  Rayleigh-Bmard convection and is not influenced by the
—To)/(d+26) is the corresponding steady adverse temperathermoelectric effectwhether it is present or nptThe sec-
ture gradient. An extemal Uniform magnetiC f|e|d Of intensity Ond Subsystem states hOW the Lorentz force Of the thermo_
H is applied inz direction. electric currents inside the magnetic field influences the

The main focus of this paper is the influence of the thershape of the unstable mode. Therefore we first present a
moelectric effect, which is acting at the interface between thejerivation of the first subsystem determining critical charac-
liquid phase and the conducting walls. The thermoelectrigeristics of instability in Sec. Il A. In Sec. Il B we investigate

effect and its consequences for magnetofluid dynamics is dghe second subsystem dealing with the influence of the ther-
scribed in detail in a seminal paper by Sherdlfi. Starting  moelectric effect.

point is the generalized Ohm’s law for an electrically con-
ducting fluid containing an additional thermoelectric term
describing the generation of the current dengityy the tem-
perature gradient grad, We begin now with the derivation of the first subsystem
of equations, which determines the critical Rayleigh number
for the instability. This result is validn both casesin the
presence of the thermoelectric effect as well as without it.

We consider an electrically conducting fluid in a horizon-
tal layer of thicknessl, restricted by electrically conducting
walls of thicknesss from above and below. The layer ex-
tends infinitely in the horizontat- andy-directions(see Fig.

A. Onset of instability

J
;:E+,u(u><H)—SgradT. (1)
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Regarding buoyancy effects in the Boussinesq approxima- Now we proceed with the linear stability analysis by ex-

tion, where the fluid is considered as incompressible excepgtanding the perturbation of the initial state into normal

in the buoyancy force term of the Navier-Stokes equationmodes. The perturbations avev,w for the velocity, =T

the fluid is described by the Navier-Stokes equation includ— T(z) for the temperature, whefg(z) is given by Eqs(8),

ing the Lorentz force, the temperature transport equation(9), and(10). h,,hy ,h, is the deviation from the-directed

and the equations for the magnetic field: uniform magnetic field. For the vectorial quantities it is

enough to consider thecomponents,

e R N G P R B Lo
E T Eary C v R Sl w=W(z)exili (kx+kyy) + g,
3
0= 0 (z)exdi(kx+kyy)+yt], (11
aT+ aT veT 4
T g VT @ h,= K (2)exili (kex-+kyy) + yt],
IH; dH; au; ) wherek= \/(kx2+ kyz) is the wave number of the disturbance,
ot uj&_x,- - Hj(;_Xj“L 7VoH;, 5 i is the growth rate of the perturbations in time. To introduce

nondimensional variables we choad@s unit of length3d
wherei=x,y,z. p=const is the fluid density at some prop- as unit of temperatured®/v as unit of time,H as unit of
erly chosen mean temperatufé and Ap=—pa(T—T*), magnetic field and leb=d(d/dz) andk, z be already mea-
where « is the coefficient of volume expansiog.is the sured in nondimensional units.
acceleration due to gravitp,is pressure in the fluidy is the Inserting the normal mode expansions into equatiGs
kinematic viscosity,) the magnetic current density.is the  (7) we get the following system of dimensionless linear
temperaturex is the coefficient of thermal diffusivity ~ equations for the marginal stateharacterized bys=0):
=1/(no) is the electrical resistivity of the fluid. The mag-

netic field and the velocity field are solenoidal: ¢iv=0, div (D?~k?)?W—k’Ra® +(Pn/P)~"Ha’D(D*~k*)K =0,

u=0. Inside the solid walls there is no convection and one (12
gets diffusion equations for the temperature and the magnetic s o
field: (D*=k9)O+W=0, (13
aT (D?-Kk?»)K+ (P, /P)DW=0, (14)
St = VT, (6) ;
(D*~k*)©,,=0, (15)
= 1V Hui. (7) (D2—K)K,,=0. (16)

The unperturbed state is characterized by quiescent fluidhe first three equations hold for the fluid and the last two
tion. The solution of the temperature equatigés with u  the fg"OWl”G_ nondimensional  parameters:  Ra
=0 in the fluid and(6) inside the walls is given by the =agBd"/(«¢v) is the Rayleigh number, HaduH Vo /pv
fo”owing piecewise |inear temperature prof”e IS the Hartmann number. The ratio Of the magnet|c Prandtl

numberP,,= v/ n; and the Prandtl numbér= v/ «x; one can

N consider as one parameteP(/P) = k¢ / ;.
Tw=T1=—B(6+2), —<z<0, 8 A solution of the Eqs(12)—(16) must be sought that sat-
" isfies the nondimensional boundary conditions,
A
T=T1—,8()\—f§+z), 0<z<d, ©) W=0, DW=0 for z=0 and z=1,
w
N 0,0, L,DO=D06O, for z=0 and z=1,
Tuo=To+ )\—fﬁ(dJr 5—2), d<z<d+s, (10 (17
w
0,=0 for z=—-Ly and z=1+Lyg,

where\ is the coefficient of thermal conductivitg= 3(d

+26)/(d+26N¢/\,) is the temperature gradient, which is with the nondimensional parametdrg=\¢/\,,, Lq= 6/d.
maintained inside the fluid. Lower indewl denotes the We do not write the boundary conditions for the magnetic
lower wall, w2 the upper wall. As the temperature profile field because first, as it turned out, the critical Rayleigh num-
depends on the coordinate only, there are no horizontal ber is determined by the Eq6l2)—(16) with the boundary
temperature gradients at the liquid-solid interfaces and coneonditions(17) already selfconsistently and second we do

sequently no thermoelectric currents. This medsa9 in the
unperturbed state.

not search the solution for the magnetic fi&dn the mar-
ginal stable state.
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The system of Eq9.12)—(14) can be reduced to the fol- shows a sinusoidal shape and creates thermoelectric currents
lowing differential equation for the component of the ve- parallel to they axis which are strongest where the tempera-

locity W (see Chandrasekhft]): ture curve is steepest and which are zero at the maxima and
. ) M Loas ) minima of the temperature distributidsee Fig. 1, part 2
WI®)— (3K?+ Ha?) W) + k?(3k?+ Ha?) W) The resulting Lorenz force points in thedirection, parallel

to the axes of the convection rolls and its strength is an
oscillating function ofy (see Fig. 1, part3

The upper index in parentheses denotes the order of deriva- The Lorentz force will accelerate the fluid along the axes

tive. The general solution folV is a superposition of expo- of the convection rolls and the vorticity will additionally
nential, sine or cosine functions with unknown coefficients"@Ve 8 component besides thecomponent. The boundary

C,(n=1 6) in thedependence on the rootg, of the condition of the thermoelectric effe¢®) for the tangential
aSpropri’a.té characteristic equatifid]; components of the current density can be transfortnsihg
' divJ=0) into a boundary condition fal,,

+k?(Ra—k*)W=0. (18

®—(3k*+Ha?)q*+k*(3k*+ Ha?) g+ k*(Ra—k*) =0.
L Akl ATkl ) (19 1 0y, 143, (&2T+02T) o1

ax?  ay?

These rootg),(n=1, ...,6) can beeal or complex, simple
or multiple depending on the valueskiRa,Ha. They deter-

. . - Thus, to describe the influence of the thermoelectric effect
mine the form of the functioW (all possible cases are de-

. ; o . : . one needs additionally the equations for the vorticity and
scribed in detail in the AppendixThen using the Eq12),in ¢ \rrent density in the fluid and in the walls. We use the

which K is eliminated by help of Eq14), we can write the  ma mode expansions for tzeomponents of the pertur-
general solution for the temperature through the general SQations of the vorticityw, and current density, :
lution of the velocityW in the following form: z z

w,=Z(z)exdi(kx+kyy)+yt],

0= W — [ 2k2 + Ha2JW@) 4 k4W), : . (22
Ra L ] ) Jo=X(2)exiTi (kx +kyy) + .
_ _ Computing the curl of Eq¥3), (5), and(7) and transforming
0,,=C kz]+C kz], 20 ; X ) i
w=Crexil —kz]+ Coexikz] 20 to the nondimensional units we get the following system of
0,,,=Co exf] —kz] + C1oexy k7, equations foiZ and X (¢=0):
2_ 12 -1 —
whereCy, ... ,C4o are unknown coefficients. (D*=K*)Z+ (P /P) "HEDX=0, (23
To determine the ten coefficien®;, in the ansatz for the 5 12 B
velocity W (see Appendixand the temperatur® (20) these (D =KX+ (Pn/P)DZ=0, (24)
expressions are inserted into the boundary conditids (D?—k?)X,,= 0. (25

This leads to a system of linear equations that can be written
in matrix formA- C=0, whereC denotes the vector contain-
ing the ten coefficients. The coefficients of matfixdepend
on k,Ra,Hal, ,Lq. A nontrivial solution exists, if deA
=0. This condition determines the Rayleigh number for neu-
tral stability Rg@=Ra,(k,Ha.L, ,Ly). One gets thecritical
Rayleigh numbeRa. for the onset of convection by taking
the minimum value of Rain dependence on the wave num-
berk: Ra,(Ha,L, ,L4)=min.g Ra,(k,HaL, ,Lg).

The system of equations that was considered in this sec-
tion is, as already mentioned, valid both in the presence and
absence of the thermoelectric effect. Therefore the value of
the critical Rayleigh number is independent from the pres- . .
ence of the thermoelectric effect. Here two new nondimensional parameters appday:
=o¢lo, and the thermoelectric parameterK g
=PpBdo;/H. The first boundary condition in Eq&6) is the
condition of the thermoelectric effe(21) now in dimension-

Without regarding the thermoelectric effect theompo-  less form.
nents of the vorticityw, and current density, are zero(see We remind that the systef23)—(25) describing the influ-
[4]). The unstable solutions are convection rolls directing inence of the thermoelectric effect is formally independent
an arbitrary direction of thety plane. To take into account from the systen{12)—(16) describing the onset of instability.
the consequences of the thermoelectric effect we choose tlithe system(23)—(25) is added to the systerfi2)—(16), if
axes of the convection rolls to be parallel to thexis (see  the thermoelectric effect must be taken into account. It can
Fig. 1, part ). The temperature distribution ip direction  be once more pointed out that on the ground of the indepen-

Then the boundary conditions for tae&omponents of the
vorticity and the current density are:

L,DX,—DX=K7g(—k?»®, X,=X for
z=0 and z=1,
Xyw=0 for z=-Lq and z=1+L4, (26

Z=0 for z=0 and z=1.

B. Influence of the thermoelectric effect on the unstable mode
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dence of these two systems the critical Rayleigh number 1750 3.15
comes only from the systefd2)—(16), even though the ther-
moelectric effect is present. 1680 3.05
Eliminating the vorticity one receives one differential
equation for the current density in the fluid 1610 2.95
X — (2k2+ Ha2) X + k*X =0. 2n Rae ke
1540 2.85
The characteristic equation of this equation has only real
roots ¢4, ... ,ps. Equation in the wall$25) is solved sepa- 1470 275
rately and the general solution for current density is given as Ha=0
1400 2.65
4 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
X= nZl Gnexd ¢nz], (a) Lq (b) La
FIG. 2. Critical Rayleigh numbeia) and wave numbe(b) as a
Xw1= Gsexp kz] + Geexd —kz], (28)  functions of the parametéry (the ratio between fluid layer and wall
thickness) for Ha=0 and Ha=1 atL,=0.5 in the state of the
Xw2=Grexfd kz]+ Ggexd —kz]. stationary convection.
Here G4, ... ,Gg are unknown coefficients. If the solution 5nq the corresponding wave numleras a functions ok 4 .

for the current densitX is known, then the solution for the 1y curves for Ha=0 and Ha=1 are shown, the ratib, is
vorticity Z is gained by integration of Eq24). Substituting  fiyeq to 0.5. Increasing of the Hartmann number leads to an
this expression for the vorticity in Eq. (23) we find thatthe  ,crease of the critical Rayleigh number, because magnetic
constant of integration is equal to zero. Then the genergig|q has the tendency to suppress convection. In absence of
solution for the vorticity is the conducting walls — corresponding itg=0 — the ob-

a 2_ 12 tained results can be compared with the computation data of
Z=—(P,IP) 'S Gn‘Pn ext o12]. (29) Chandrasekhdd] in case of the both rigid boundari¢see
n=1 Pn Table |)

From Fig. Za) we observe a destabilizing influence of the

The general solutions foZ and X being inserted in the conducting walls compared toy=0 on the stability state.
boundary condition$26) give an inhomogeneous system of This means if the thickness of the walls increasks in-
linear equations for determination of ti@&,. This system creasepthen instability occurs at a lower value of the critical
can be written in matrix form aM-G=F, where the ele- Rayleigh number. This can be explained by the nature of the
ments of matrixM and right-hand side vectds are given. physica| processes tak|ng p|ace in the Ray|e|g’h.3d con-

Thus we have surveyed the solution of the systéhi2s—  vection. As known(for example, from the detailed descrip-
(16) and(23)—(25) from five and three differential equations tjon of convection given by Normaret al. [16]) the vertical
with the boundary condition17) and (26) accordingly, temperature gradient maintained in the fluid has the conse-
which in total contain the seven nondimensional parametersjuence that there is light fluid below heavy fluid because of

Ra,Ha,(Pm/P),Ly,Lg,Ls,Kre, described above. thermal expansion. Accordingly the parts of the fluid have a
natural tendency to redistribute themselves in order to amend
[1l. NUMERICAL ANALYSIS AND RESULTS the formed disbalance. Instability occurs at minimum tem-

perature gradient at which the stabilizing effect of viscosity
and thermodiffusion are overcome by the destabilizing buoy-
ancy. In presence of the conducting walls there appears the
oundary condition(17) of a constancy of the heat current
hrough boundary interface between the wall and fluid. This
%eat current irz direction from bottom wall to fluid is addi-

In Sec. Il we derived the matrix equations for the coeffi-
cients of the general solution first for the determination of
the critical Rayleigh number and second for the determinin
how the unstable mode is changed by the thermoelectric e
fect. These equations are solved numerically with help of th
LU decomposition methofil5]. This section is divided into
two sqbsections. The first one deals with the determme}tion of TABLE I. Comparison of the critical Rayleigh numbers and the
the critical Rayleigh number and the second one with th§yaye numbers, computed on the base of present theomquality

thermoelectric effect. to zero of the wall thicknegswith the result of Chandrasekhpd]
(both bounding surfaces are rigid

A. Computation of the critical Rayleigh number

As it is already stated in Sec. Il A RaRa,(Hal, ,Ly). Numerical computation The Chandrasekhar’s
The ratioL, between the thermal conductivities of the fluid of present theory results
and wall and the ratid_4 of the fluid and wall thickness’ Ha ke Ra, K Ra,
come into the problem because the thick walls are consid- g 3.11 1707.768 3.13 1707.8
ered. To show the influence of the thick walls on the critical 1g 4.01 3757.229 4 3757.3

Rayleigh number we present in FiggaRand 2b) the Ra
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2.8 3800 TT 5.1 ——
0
£ 21 3700 4.7
2
£
£ 14 3600 43
& Ra, IgRa,
=
'g 0.7 3500 3.9
C
> L
0.0 . . . . 3400 3.5 &
0.0 0.2 0.4 0.6 0.8 1.0 b
(a) z ool = ., . 3.1 T
. 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
0.175 Ly \gHa?

0.140 FIG. 4. (a) Critical Rayleigh number as a function &f; (the

ratio between fluid layer and wall thicknessit Ha=10L,=0.5:
curvea is gained using the full system of equations, cuover the

case when the wall thickness is considered as small in comparison
wall fluid wall with the fluid layer thicknesk 4<<1 (the temperature function in the
walls behaves as a linear functjol€urvec presents the asymptotic

0.105

0.070

Temperature (arbitrary units)

0.035 : : behavior of the critical Rayleigh numberlag— <> (the temperature
0.000 . . . in the walls can be described by one exponential fungtidn)
-0.5 0.0 0.5 1.0 1.5 Dependence of the limits of the critical Rayleigh numberLgt
(b) z —0 andLy— on the Hartmann number, cungepresents Ra

and curveb Ra....
FIG. 3. The solution for the components of the velocitw (a)

and of the temperatur® in the fluid and wallg(b) for the state of  walls by a linear function of the coordinate
the marginal stability at Ha1,L,=0.5] 4=0.5.
®Wl= C;‘F Céz,

tional driving force of the convection. Whereas temperature —clic!
gradient in fluid and forces inhibiting the convectiiscos- w2= 9T Tk

ity and thermodiffusionare the same as previously. There- pecayse the partial derivativessirandy direction are much
fore the instability can manifest itself already at a lower ad-gmgjier than the partial derivative indirection. Figure %)
verse temperature gradient, i.e., at a lower value of th¢epresents again the critical Rayleigh number as a function of

Rayleigh number. , Lq. Curvea is computed using the full heat equation and
The z components of the velocityV and temperatur® e b is computed by the linear approximation for thin

for the mode of neutral stability at HalL,=0.5L4=0.5  wajis. In the interval 8<L4<0.1 both curves are in good

(with the coefficientCy in Eq. (20) set equal to LLis plotted  agreement, but for higher values|of the linear approxima-

in Figs. 3a and 3b). Only thez dependence is shown, in tjon js no longer appropriate and the destabilizing effect of
horizontal direction(normal to axis of the convection roJls  ine heat conducting walls is overestimated.

the velocity and temperature are (_)scillating functions with  gecond we explore the marginal stability state in case of
wavelengthL .=2m/k . In the graphic &) for the tempera- ne high limit ofLy, when the fluid layer thicknessis much
ture ® one can see a kink of the curve at transition across thgmajier than the wall thickness(d< 8= L 4>1). Then limit
wall-fluid interface. The temperatures of the wall and fluid in o\,51uation atLy— in the boundary conditionél7) gives

kink point are equal, but the derivatives of the temperaturgne possibility to describe the temperature functions in the
functions are different in the wall and fluid. The slope of they4)is as depending only on one exponential function

temperature curve changes at interface, because wall and

fluid have different thermal conductivities. 0,,=C}exgkz],
At the end of this section we enter an additional verifica-
tion of received results for the marginal stability curves in 0,,,=Cjexf —kz].

the two limit cases of the parametey, namely,L4—0 and

Ly—o. The limits of the critical Rayleigh number in these Accordingly this procedure decreases linear size of the ma-

limit cases we will name Rg and Ra. appropriately. In  trix A by 2. The reduced matriA does not depend on the

both limit cases the matriR, with help of which the critical parametelLy and one can numerically compute the asymp-

Rayleigh number is determined, can be simplified. tote, to which the critical Rayleigh number approaches at
First we have made numerical calculations in the frame ot ;—. This asymptote Ra=3367.01099 labeled c is

an analysis where the wall thicknedss assumed to be small dashed in Fig. @). In the computation shown in Fig(d we

in comparison with the fluid layer thicknesi{ é<deLy have chosen a higher value of the Hartmann number Ha

<1). In this case one can approximate the temperature in the 10 in order to enhance the influence of the magnetic field
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(L, still is 0.5. The critical Rayleigh number is more than 175
twice the value as in Fig.(8) for Ha=0 and Ha= 1, which £ 150} -
demonstrates the stabilizing effect of the magnetic field. g 125k ]
The dependence of the critical Rayleigh number on the g‘
parametel_4 can be approximated by the exponential func- £ 100F 1
tion as 8 75t -
£
Ra.=Ra...+exg —kLg4], g 501 .
[ =
where, for example, for Ha10 andL, =0.5[as in Fig. 4a)] > 23
the exponent is found to be closeke-7. - 0.00 0.25 0.50 013 100
In Fig. 4(b) we present a dependence of the both limits of (@) z
the critical Rayleigh number Rgand Ra.. on the Hartmann
number up to Ha 100. 0.0075

0.0050
B. Measures of the influence of the thermoelectric effect

We have already found out that the thermoelectric effect 0.0025

does not change the critical Rayleigh number for onset of
convection. In this section we shall answer the question: how
is the unstable mode influenced by the thermoelectric effect?
Additionally we define two quantities that are suitable to

show the strength of the influence of the thermoelectric ef-

0.0000
-0.0025
-0.0050

Current density (arbitrary units)

fect. -0.0075 L
The thermoelectrical parameti€r g is present only in the 05 0.0 05 1.0 15
boundary condition§26) for the zcomponents of the vortic-  (P) z

ity Z and the current densit{. Namely the right-hand side
vector F of the systenM - G=F for determination ofG,(n
=1,...,8)includesK+g. As the result of numerical solu-
tion of this system Figs.(®) and §b) illustrate the behavior
of Z and X in the marginal stable state for Hal,L,
=0.5L 4=0.5 (the same parameters as for Fig, @°,/P)
=0.5x10 °L,=0.5. Given results were computed at the vorticity w=(wy,w,,w,) are also functions of th&g.
thermoelectrical paramet&rrc=0.1. As forwWand® in Fig.  Thus the thermoelectrical effect being induced by the con-
3 also forZ andX arbitrary units are used, because the linearection influences itself the convection by changing the
equations for the unstable mode give only a linear subspacghape of the unstable mode, whereas the critical Rayleigh
as a solution. number remains unchanged. The qualitative three-
To clear up the influence of the thermoelectric effect ondimensional schema of the fluid convection flow in the state
the shape of the unstable mode we search the horizontak the marginal stability is sketched in Fig. 6, from which
components of the velocity,v and vorticity w, ,w,. From  one can see that the streamlines inside of a convection roll
the substitutior(11) we get thez components of the velocity are situated in vertical planes. Though under the influence of
w and vorticity w,. Then we findu,v from system, the thermoelectric effect these planes are turned around a
vertical axis by an angle [see also Fig. @ ]. This angle is
determined by amount of th€;g number. We define angte
for the marginal stability state as follows:

FIG. 5. The solution for the vorticity (a) and for the current
density X in the fluid and walls(b) for the state of the marginal
stability ~at Ha=1L,=0.5L4=0.5,(P,/P)=0.5x10"5L,
=0.5K:g=0.1.

[7U+t9v ow
ox dy  dz’

Jv  Ju
X ay v
and oy, as follows,
oW  dv
Ty ez
(30)
Jdu  Jw
N9z ax-

The z component of the vorticityw, is function of theK+g
number, which enters into the boundary conditid2$).
Therefore the general vectors of the veloeity (u,v,w) and

FIG. 6. The qualitative three-dimensional schema of the convec-
tion rolls position influenced by the thermoelectric effect in the state
of the marginal stability.
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-0.040 . . . . @ >
0.00 0.02 0.04 0.06 0.08 0.10
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FIG. 7. Kinetic helicity as a function of the thermoelectric pa-
rameter Kt in the state of the marginal stability at Ha L4 L1821 7
=0.5L,=0.5L,=0.5,(P,/P)=0.5x10">,
0.887} -
| u(2) v
v=lim|arctan—|. (31 (rad)0.591 1
2ol (2 AL-Li pair
For the fluid and walls in the given system a concrete 0.296 7
metal pair can be taken. Then the anglwill depend on the 0.000 ) ) .
parameterd., ,L,,(Pn/P) characte_rlzmg the properties of 0.000 0.025 0.050 0.075 0.100
metals, and on Ha . The angley will magnify with grow- (b) K1E
ing parameterK;g. This fact can be also represented by
behavior of the relative kinetic helicity FIG. 8. The angley of the convection rolls deviation under
influence of the thermoelectric effect in the state of the marginal
stability (the schematic view from aboyda); the angley as a
0 u-wdxdydz function of the thermoelectrical parametésg, calculated for the
Riin= Al-Li solid-liquid system at Ra=1462.64,Ha1,L4=0.5 (b).
n 1
2 2
\/f fﬂf u dXddef LJ w®dxdydz angley on Kyg is computed at Ra1462.64, Ha1, Ly
=0.5 with help of the formuld31).
(where( is volume of integrationas a function of th& ;¢ The parameteK;g=(PBdo;)/H is determined by the
number (see Fig. 7 at Ha=1L4=0.5L,=05L, thermoelectric poweP of the metal pair, electrical conduc-
=0.5,(Py/P)=0.5x10"5. tivity of the liquid phaseo;, maintained temperature gradi-

Thus we can close about a physical treatment of the thent 8 in the fluid, thicknesdl of the liquid layer, and inten-
influence of the thermoelectric effect following. The currentsity H of the magnetic field. For the Al-Li pairP
flow arising in fluid-wall boundary layer as result of the hori- ~30 (wV/K) [6], os=0c;. There are three further param-
zontal temperature gradient on this interface creates the Loetersg, d, andH, which are independent on the properties of
entz force that is parallel to the boundary surface and parallethosen metals. But to calculate tkgg number and the cor-
to the convection rolls axis. However, the Lorentz force hagesponding angle for the Al-Li pair one can not freely give
different absolute value along of tlyedirection. It leads to a a numerical values for all three coefficiens d, and H,

helical flow inside the convection rolls. because these coefficients are interrelated by Ra and Ha
numbers. We can preset an arbitrary numerical value only for
IV. CONCLUSION one from the coefficient®, d or H. Then we can calculate

the other two coefficients from the following relations:
In summary, we want to conclude that the thermally and

electrically conducting walls have ,destabilizing influence Bd*= const

upon the stability set in the Rayleigh-Ba&rd problem inside '

the magnetic field. The thermoelectric effétdken into ac-

count as the boundary condition on the fluid-wall interface dH=consp. (32
does not affect the critical Rayleigh number, but changes the

shape of unstable mode. Here const and const are specified by concrete metals and

The prediction of the influence of the thermoelectric ef-by the fixed Ra and Ha numbers, at which the given angle
fect upon the shape of unstable modes of the solid-liquicas function fromK+ g was computed. For example, for the
system Al-Li can be instanced qua numerical test. For giversolid-liquid system Al-Li at magnetic fiel=1 mT we get
metal pair the angle of the convection rolls deviation is the from Eq. (32) d=16.1 mm, 8=208,255 (K/m). Upon that
increasing function of thdg number, graph of which is the parameteK;g~0.02220, it adds up to the angle
plotted in Fig. 8b). This function of the dependence of the ~67.31°.

036307-8



INFLUENCE OF THE THERMOELECTRIC EFFECT ON . ..

PHYSICAL REVIEW & 036307

We note also that in absence of the thermoelectric effeckf y;<<0 then it is found from Eq(A2) two complex conju-
the limc__.oy=0, i.e., the convection rolls do not deviate gate rootsq;,d, with only imaginary parts. Corresponding

from thezy plane; with growth of the thermoelectric effect functionsfy,f, are

the turn of the rolls increases with increasing valukeg .
For K1g— < the angley approchesr/2 asymptotically. The

value of w/2 is of couse never reached for finite value of

KTE .
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APPENDIX

f1(z)=coqIm(q,)z],

f2(2)=sinIm(q,)z].

In the casey;=0 we have two-multiple roaq; =q,=0 and

(A6)

f1(2)=1,

fo(z)=z. (A7)
Thereby all possibilities fof,,f, are over. Consider remain-
ing four functionf; (i=3, ... ,6).

(1) If A3+B2>0 then the Eq(A3) has besides one real

_In the Appendix we present the forms of solution of the ot y, another two complex conjugate roots, ys. Thus
differential equation(18) for velocity W in dependence on sing (A2) we get another four roots for the equatii®).
thek, Ra, Ha. These forms of solution are necessary to inseffhey are two pairs of the complex conjugate rapisq, and

them in the solution for temperatu¢20) and in the boundary
condition(17).
The general solution foW can be written as superposition

W= lel(Z) + C2f2(Z) + C3f3(Z) + C4f4(Z)

+Csfg(2) +Cgfe(2). (A1)
Here C; (i=1,...,6) areunknown coefficients, the func-
tionsf; (i=1,...,6) aredetermined by the six roots of the

characteristic equatiof19). The characteristic equatidi9)
is reduced by the substitution

2_

q=x (A2)

to the cubic equation

x> +ayx®+ax+ap=0, (A3)
where ap=k*(Ra—k*), a;=k?(3k?>+Ha?), a,=—(3k?
+Ha&?). Define the parametek andB as follows:

1 1
-

A=z

(A4)
1 1 .
B= E(alaz— 3ag)— 2—7a2.

The sign of quantityA®+ B2 determines whether the roots of
characteristic equatiofA3) are real(different or multiple or
complex. Three caseAf+B2>0,<0 or =0) specify ap-
propriately the form of solution of the E¢18).

One of the roots of the EA3) x; is always real irre-
spective of the sign of quantitf®+B?2. It is of importance
this root y, is positive, negative or equal to zero.}f>0
then two real rootg); and g,=—q, found from Eq.(A2)
yield the functiong(see alsd14])

f1(z)=exd q,z],
(A5)
f2(z) =exd qzz].

Os5=—03,06=—0Q4. In this case the functionsf; (i
=3, ...,6)have the form

f3=exd Re(qs)z]cog Im(q3)z],
f,=exgd Re(q,)z]sin Im(q,)z],
fs=exd Re(gs)z]cog Im(gs)z],s

fe=exd Re(qe)z]sin Im(qe)Zz].

(2) If A3+B2<0 then the Eq(A3) has besides one real
root y, another two real rootg, and ys. Upon that all three
roots are different. In this case signsyaf and y5 determine
via Eqg. (A2) the rootsq; and form of f; (i=3,...,6). If
x2>0 then

(A8)

f3(2) =exd qsz],

(A9)
f4(2)=exdq,z].
If x»,<0 then
f3(z)=cogIm(q3)z],
(A10)
f4(2)=sinIm(q,)z].
If x,=0 then
f3(2)=1,
(A11)
fi(z2)=z.

Analogically one can write the functiofy,fg for x3>0,x3
<0,x3=0, counting thaiy{,x»,x3 can not be equal to zero
simultaneously.

(3) If A3+B?=0 (A3=—B?+0) then the equatiofA3)
has two equal rootg,= x3. With that if yo,=x3>0 then
43=0ds>0, g5=0s= —03<0 and
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f3(2)=exd asz],

f4(z2)=zexd a,z],

f5(z)=exp gsz], A1
fo(2) =z exp gez].
If xo=x3<0 then
f3(z)=cog1Im(qs)z],
f4(z)=2zcogIm(qgs)z],
f5(z) =sinIm(as)z], (A13)

fe(z)=zsiMIm(gs)z].

PHYSICAL REVIEW E54 036307

If xo=x3=0 then
fa(z2)=1,
fi(2)=2z,
fs(z) =22 (A14)
fo(z)=2°.

If A5+B?=0 (A=B=0) then solution of functionV has
polynomial form

W= (C;+ C,pz+ Czz%)exf q,z] +(C4+Csz

+ Cgz%)exfd g,2], (A15)

whereq; = \/;1, gx=— \/;1: — (1.
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